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Photon splitting in the magnetised vacuum

R J Stonehamt

Department of Theoretical Physics, Faculty of Science, Australian National University,
Canberra, Australia

Received 5 December 1978

Abstract. An explicit result for the quadratic vacuum polarisation tensor in a static uniform
magnetic field is derived using the Géhénian representation of the electron propagator. The
formalism of relativistic-quantum plasma physics is used to calculate the probability for a
photon to split into two photons in the magnetised vacuum, without approximation in the
magnetic field strength or in the photon frequency or wavenumber. The exact effect of
photon dispersion on photon splitting is included. It is shown that the probability for photon
splitting in both the weak-field and low-frequency limits is greatest when the energy of the
initial photon is divided equally between the two final photons. Errors are indicated in
earlier results for the box-diagram contribution to photon splitting in the magnetised
vacuum.

1. Introduction

The possible existence in pulsars of magnetic fields with strength of order the critical
field strength B.=m?c’/ehi=4-4x 10" gauss has generated interest in relativistic
quantum processes occurring in a strong magnetic field. In particular, the splitting of a
photon into two photons in the presence of a magnetic field has been discussed in
various approximations by Adler er al (1970}, Bialynicka-Birula and Bialynicki-Birula
(1970) and Adler (1971). For B < B, Bialynicka-Birula and Bialynicki-Birula (1970)
have shown that the splitting of a photon into more than two photons is suppressed due
to the smallness of both the scattering amplitude and the available phase space. In this
paper, the probability for a photon to split into two photons due to the quadratic
polarisation of the magnetised vacuum is derived exactly, without approximation in the
frequency w, wavenumber k or magnetic field strength B, and without assuming that the
vacuum refractive indices are approximately equal to unity (i.e. without assuming weak
photon dispersion). Radiative corrections to the quadratic vacuum polarisation tensor
are assumed to be negligible (a reasonable assumption for B < B,).

One method of calculation of the probabilities for relativistic quantum processes in a
magnetic field involves replacing the field-free electron propagator in the Feynman
diagram for the corresponding field-free process by the electron propagator in the
ambient magnetic field. One representation of this propagator, which is exact in the
ambient field, was derived by Géhéniau (1950) and Géhéniau and Demeur (1951).
Photon dispersion in the magnetised vacuum may be determined by making this
replacement of the electron propagator in the ‘bubble’ diagram corresponding to the
linear vacuum polarisation tensor (e.g. Tsai 1974, Melrose and Stoneham 1976). The

t Present address: Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, UK

0305-4470/79/122187+17$01.00 © 1979 The Institute of Physics 2187



2188 R J Stoneham

magnetised vacuum is found to be birefringent with the two refractive indices being
functions of the field strength and of the photon frequency and wavenumber. The
probability for photon—photon scattering in the magnetised vacuum may be determined
by making this replacement of the electron propagator in the ‘box’ diagram cor-
responding to the cubic vacuum polarisation tensor {(e.g. Ng and Tsai 1977). In this
paper this replacement of the electron propagator is made in the ‘triangle’ diagram
corresponding to the quadratic vacuum polarisation tensor. The formalism of relativis-
tic quantum plasma physics (e.g. Melrose 1974) is then used to derive exact results for
the probability for a photon to split into two photons in the presence of an ambient
magnetic field. One advantage of this method of calculation is the relative ease with
which the exact effect of photon dispersion on photon splitting is included.

The Feynman diagrams relevant to photon splitting are presented in § 2 and the
importance of the ‘non-dispersive case’ (where photon dispersion is ignored) is dis-
cussed. The Géhénian representation of the electron propagator in a magnetic field is
recorded in § 3 and is used in § 4 to calculate the quadratic vacuum polarisation tensor
in a magnetic field. Exact probabilities for photon splitting in the magnetised vacuum
are derived in § 5 using the formalism of relativistic quantum plasma physics. The
non-dispersive case of photon splitting is discussed in § 6 and dispersive effects are
included in § 7. In the Appendix, errors are pointed out in the results obtained by
Bialynicka-Birula and Bialynicki-Birula (1970) and Adler (1971) for the box~diagram
contribution to photon splitting in the magnetised vacuum.

The notation used in this paper is that of Berestetskii et a/ (1971), with the
exceptions that here the electronic charge is —e and Sp denotes the trace over Dirac
matrices. Unrationalised Gaussian units with ## = ¢ = 1 are used. The symbols := and =
define the quantities on the left and right respectively, and A* =(A°, A) relates a
4-vector to its time and space components and A = (A, A, Aj) relates the 3-vector to
its Cartesian components. The quantities g% and g{” are defined as diagonal
(0,—-1,-1,0) and diagonal (1,0, 0, —1) respectively and the. contractions of two
4-vectors a* and b* over the L and || sub-spaces are written as (ab), = a’b"g;, and
(ab);=a°b"g). The L and || parts of a 4-vector are defined by a* = g"a, and
af =g a..

2. Feynman diagrams

The processes of photon dispersion and photon splitting in an ambient magnetic field
are strictly inseparable processes. To lowest order in the fine structure constant «, but
exactly in the ambient field, the Feynman diagrams for the splitting of a photon into two
photons are given in figure 1, where the electron propagator is the Géhénian propagator
and where the dispersion relations for the initial and final photons are given by the exact
results for the magnetised vacuum.

When photon disperion is weak it is convenient to consider initially the non-
dispersive case. Dispersive effects may then be included as small perturbations.
Conservation of 4-momentum in the non-dispersive case can only be satisfied if the
propagation directions of the three photons are identical. This condition, together with
the requirements of Lorentz invariance, gauge invariance and charge-conjugation
invariance, imposes restrictions on the scattering amplitudes for photon splitting.
Bialynicka-Birula and Bialynicki-Birula (1970) and Adler (1971), for example, have
shown that photon splitting in the non-dispersive case with one interaction with the
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ambient field (figure 2) is forbidden. Adler (1971) has also shown that the scattering
amplitudes for splitting with exactly three interactions with the ambient field (figure 3) is
exactly given by its low frequency limit.

Figure 1. The Feynman diagrams for photon splitting. The electron propagator is the
Géhénian propagator and the dispersion relations for the initial and final photons are given
by the exact results for the magnetised vacuum.

Figure 2. A box diagram for photon splitting. The X denotes an interaction with the
ambient field. There are six such diagrams corresponding to permutations of the vertices.

Figure 3. A hexagon diagram for photon splitting. Each x denotes an interaction with the
ambient field. There are twenty such diagrams corresponding to permutations of the
vertices.

3. The electron propagator

Géhéniau (1950) and Géhéniau and Demeur (1951) derived a one-dimensional
integral representation of the electron propagator in a static uniform magnetic field
which includes the effect of the ambient field exactly. With the 3-axis along the
magnetic field B the propagator from x* = (¢, r) to x'* = (¢, ') may be written as

G(x, x")=¢(x, x"YA(x —x"), (1
with
¢(x,x') = exp{—ieJ dx,‘A“(x)} (2)
and
_ eB [T ds exp(—im?s) 3 ieB(x%), i(x?)
Alx)= - 1672 L s sin(eBs) { 4tan(eBs) 4s }

X { [m +% ('yx)“] exp(—iZeBs)+ (yx)L}. (3)

eB
2 sin{eBs)
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The integral in (2) is along the straight line from x to x’ and A*(x) is the 4-potential of
the ambient field. Feynman’s rule for avoiding the poles is understood in (3) and
3 :=iy'y?=diagonal (1, -1,1, -1).

The function A(x) is independent of the choice of gauge of the ambient field. The
gauge dependent part of the electron propagator may be rewritten as (Schwinger 1951)

* 1
¢(x,x’)=exp{—iej dxu[A“(x)+%F‘“’x,]—§iex“ ‘“’x:,}, 4)

where F*":=9A%/dx,—0A"/dx, is the Maxwell tensor of the ambient field. The
integral in (4) is independent of the path of integration.

4, The quadratic vacuum polarisation tensor

The unsymmetrised quadratic vacuum polarisation tensor in the presence of an ambient
magnetic field is defined by

at™(x, x', x") =1e’Sp[y*G(x, x")y"G(x', x")¥y* G (x", x)] (5)

and correspnds to the electron propagator part of one of the triangle diagrams of figure
1. The tensor is symmetrised in {16) below to include the contribution from the other
diagram of figure 1. Substituting (1) with (4) for the electron propagator in (5) gives
at?(x, x', x") =ie> explie(x — x) F* (x"—x),]

xSply* A(x —x")y"A(x'—x")y* A(x" - x)]. (6)

This result is manifestly translationally invariant and manifestly independent of the
choice of gauge of the ambient field. Choosing x”= 0 in (6) and using (3) gives

+ 3 3 =<} =<} ©
N , ie’(eB) N ds ds’ ds”
ai(x,x)= —mexp(%xex“F“ Xy) L . L - J'O w
exp[-imz(s +5'+ D (x, x")
sin(eBs) sin (eBs’) sin(eBs")
[ i (eB(x -x)?  eB(x)® eB(x?).
xexp| ——=
tan(eBs) tan(eBs’) tan(eBs")

4

N (x —x’)ﬁ+ ("} + (xz)u)],

@)

t n

s s s
with
D% (x, x')=Sp { " [exp(—iZeBs)(m + (Y(x2—sx ))") + eBZ(:i(nx(;;’)))L]

(yx" )\ , eB{yx")L
2s' ) +2 sin(eBs’)]

- (;:'?") - 221((:)2:")] }

Xy"[exp(—iZeBs’)(m +

><y"[exp(—i2eBs")<m (8)
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The Fourier transform of (7) is given by
af(k, k', k"= j' d*x j d*x’ exp(ikx —ik'x")a’"™ (x, x'), 9)
where the signs of the 4-momenta are chosen so that the identity

ko =kl +k] (10)

is satisfied. The relevant integrals in (9) have been evaluated by Bogoliubov and
Shirkov (1959 § 14.1). One obtains

af™(k, k', k")

ie*B (© ® ©  exp[—im*(s+s'+s")ID{* (k, k', k")
LB (7 [ g [ gpe il 0D
4m) ) o o (s+s'+s"sin[eB(s +5'+5")]

{ ,({s”(s +5)k2=2s's"kk' +s'(s + s”)]k’2}||
xexp l [} "
(s+s'+s"
N {$" sin[eB(s +s") k> =2C$'$"kk' + §' sin[eB(s + s")]k’zh) }
eB sin[eB(s +s'+5")]
ex { 21$8'$"(kk') . }

eB sin[eB(s +s'+5")]

(11)
with
DYk, k', k")

=Sp{y“[exp(~iZeBs)(m + (yA)p + (vA).]

Xy”[exp(—iZeBs')(m + (yB)) + (yB).]

X y°[exp(—iZeBs")(m + (yCl) + (vC) . ]}

+iSp{ 7" [exp(~iZeBs)(m + (yA)) + (vA).]

» ,,(exp(—iEeBs’)yT-y" exp(—iEeBs”)'yﬁg",e
Y 2(s+s'+s"

eByiy'vi(Cgx +$‘I:"¢e))
2sin[eB(s +5'+s"]

+v"[exp(—iZeBs')(m + (yB))) +(yB).]

P (exp(—-iZeBs")'yﬁ'y“ exp(—iEeBs)yf;’g"ea
Y 2(s+s'+5")

eBy vy Qg +$'F ?a))
2 sin[eB(s+5'+5")]
+vy°[exp(~iZeBs")(m + (yC)) +(yC).]
9 “(exp(—-iEeBs)yﬁ"y“ exp(—iZeBs’)yﬁg'lrT
Y 2(s+s'+s")
eByly'yl (€ g+ $"ﬁ'if))}
2 sin[eB (s +s'+s")] ’

(12)
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where

$ :=sin(eBs), $' =sin(eBs’), $":=sin(eBs"),

¢ = cos(eBs), ¢’ := cos(eBs"), ¢ = cos(eBs"),

and

A [¢$"k +$¢"k’ s:sn(k k)]J_ Au.z[s,’k+slk’]f
sin[eB(s +s'+5")] ’ b s +sm)

pr o [C8h—SCLESI LSS [kl K

, (I e e ra—

sin[eB(s +s'+s")] (s+s' +5"

c* _ =@ +CEk+ESk $8'k" e [~(s+s)k+s'k']

» i = A 3
sin[eB(s +s'+5")] (s+s'+5M

and where the notations F*” = F* /B and k“ = F*°k, have been introduced.

(13)

(14)

The traces in (12) may be evaluated using the usual rules for Dirac matrices (e.g.

Berestetskii et al 1971). After an extremely tedious calcuation one obtains

k H)

DY (k, k',

=4m’[(A} — Bl + C!' Y{cos[eB(s + s’ +s")]g**

+28 sin[eB(s"+5)1g" +sin[eB(s" +s —s')]F**
+(Aj+Bj — Cj)cos[eB(s +5'+s")]g™
+28" sin[eB(s + s')]g?* +sin[eB(s +s'— s")]F*}
+(—Af+Bf +Cf[){cos[eB(s +s'+5")]g""
+28 sin[eB(s'+s")]g"" +sin[eB(s'+ 5" —s)]F“*}
+A*{cos[eB(s'+s")]g"® +28'$"g"" —sin[eB(s' —s")E*}
+A%{cos[eB(s'+s")]g™ +28$'$"g"* +sin[eB(s' — s")JF%}
~A” cos[eB(s'—s")]g"" +(A%gl* — A”gf*) sin[eB(s' +s")]
~A® sin[eB(s'—s")]g"*
+B” {cos[eB(s" +5)1g™ + 2§"$g°* —sin[eB(s" — s)1F**}
+B% {cos[eB(s" +5)]g"" +28"$g4 +sineB(s" —s)JE4}

“ cos[eB(s"—s5)1g" + (B gl — B%g!") sin[eB(s" + )]

B sin[eB(s"—s)]g™”

+C* {cos[eB(s +5')]g"" +2§§'g"" —sin[eB(s — s")]JF4"}
+C*{cos[eB(s +5)]g"” +2§$'g"* +sin[eB(s —s)]F"
~C? cos[eB(s —s)]g™ +(C%gl” — Ctgi®) sin[eB(s +5')]
—C?% sin[eB(s —s")1g™]
+4[2 cos[eB(s +s'+5"YJ(AYB|C} + C{A[Bf)
—((BC)Af —(CA)Bf +(AB)Cf ){cos[eB(s +s'+5"]g"”
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+28" sin[eB(s" +5)]g"® +sin[eB(s"+s —s)]F¥
—((BC)A| +(CA)B| — (AB)|C} ){cos[eB(s +s'+s")]g*™
+2$" sin[eB(s +5')1g%* +sin[eB(s +s'— s")[F*
—(—(BC)Af +(CA)Bf +(AB)C} ){cos[eB(s +s'+s")]g"”
+28 sin[eB(s' +s")1g"" +sin[eB(s'+ 5"~ $)IE4)
+(cos[eB(s'+s")]A% +sin[eB(s' + s A4} B} Cf + C{Bf — (BC)gi®)
+(cos[eB(s'+s")]A" —sin[eB(s' +s")JAZ)BfCt + C{B} — (BCYgf*)
+(cos[eB(s'—s")]A% +sin[eB(s' — s 1AL )-BI'C}| + CI'B} +(BC)gl")
—(BC)y(cos[eB(s' —5s"))(ALg + Alg —Algt")
—sin[eB(s' —s")(A%g” + ALg% — A%g4"))

+(cos[eB(s"+ 5)]B?, +sin[eB(s" +s)1B* ) CPAl + AfCl — (CA)gf*)
+(cos[eB(s" +5)]B", —sin[eB(s"+5)]B%)(CJA[ + Al'C} —(CA)gl™)
+(cos[eB(s" —s)]B*% +sin[eB(s"—s)]B%)(~C{Af + A} Cl +(CA)gl”)
—(CA)y(cos[eB(s"—s)(B.gl" + Bigt” —Big?
—sin[eB(s"—5))(B1g? + B%gt” - Blig™))
+(cos[eB(s +s)]C% +sin[eB(s +s")]C% )(Al'B} + B{ A} — (AB);gl"")
+(cos[eB(s +5')]C% —sin[eB(s +5")]C% )(A{Bf + BiAf — (AB)gi”)
+(cos[eB(s —s")]C% +sin[eB(s —s")]C% )(—A[B{* + Bf Al + (AB)gf*)
~(AB)(cos[eB(s —s")(CLgt" +Cig" - Clg
—sin[eB(s —s)}(C%g4" + C1g? - Cig))
+AHE(BICL +CLBS —(BC).g™)+$(C 1B + C1B% ~(BC).£i)}
+A{{¢(BLCt + CiB% — (BC),g™)~$(C5B% + C2B% +(BC) .gf*)}
+APC(-B4CY + C4BY +(BC).g*") - $(C1BY - C1B% — (BC) .gf™)}
+BI{¢'(CL AL+ ALCY —(CA).g™)+§'(ALCH + AL CY —(CA) gf*)}
+BR{E'(CHAL + ALCL —(CA).8*") - §'(ALC + ALCY +(CA) .gi™)}
+Bf{¢'(-CIAL+ACY +(CA).8™)

-$'(ALCh -ALCE —(CA).gl")
+CP{¢"(ALBY + BYA’ ~(AB).g"") +§"(B1AL + BEAL — (AB) .gl")}
+CI{¢"(ATB +B1A] - (AB).g")

—$"(B%A% +B7A% +(AB).g")}
+Ci{¢"(-A B +B 1A +(AB).g™)

—-$"(B5A% - BLAY —(AB) gf*)}
+2(A%BXC% + C4A”B%)-((BC A% - (CA),B% +(AB).C%)g"”
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—((BC).AL+(CA).B. -(AB).C1)g™
—(=(BC). AL +(CA).B. +(AB).C% )g""]

.
(s+s"+5"

+sin[eB(s' - s") (A% (g ~g1") + Atg™ + ALgl)

+cos[eB(s"—s)(Big” —Big!" -~ Big"")

+sin[eB(s" - s))(B% (gi” —g) + B1g% + Big"")

+cos[eB(s —s))(CLg™ - Clgl" - Cig’)

+sin[eB(s —s)NC, (gf* —g2)+ gt + Chg”

—{(Bf + Cf){cos[eB(s'+s"—s)]g"" +sin[eB(s' +s"— s)]ﬁ'i”}

—(Cf + Af){cos[eB(s"+5—5"Y]g"’ +sin[eB(s"+s — s')]ﬁ'i"}

—(A{+By){cos{eB (s +s'—s")]g? +sin[eB(s +s5' — sM1E#Y]

+ 4ieB
sinfeB(s +s'+s")]

+B*Y(g|® +cos(2eBs') g’ —sin(2eBs"\E**

+Cy (gf* +cos(2eBs") gt —sin(2eBs")E*)

—Al'gi” —Ajgl* — Bigl" — Bigi” — Cigl” - Ci'gi”

-C(ALg]” +Algl)~C'(Blgl* + Blgl”)—¢"(Clgl” + Clg®)

+§(Ag - Alg™ — ALEFY )+ §'(B7 g™ — Bog" —BYET

+$"(Cog" - Clig™ — CLF¥)).

[cos[eB(s'—s")(Afg"" —ALg" ~ATg"

[A%(gf" +cos(2eBs)g"* —sin(2eBs)F*")

The symmetrised quadratic vacuum polarisation tensor is defined by
a*(k, k', k") =Hat™ (k, k', k") +at™ (k, k", k)].
For the magnetised vacuum, (16) with (11) may be rewritten as

aﬂvVD(k, kl’ kl()

ie*B J"’" © h exp[—im’*(s +s'+s")]
B 0 " [ar
2(4m)* Jy g o g o ds (s+s'+s"ysin[eB(s +s'+35")]
P (s+s'+s")
ESTE+ S R+ §EC),

eB sin[eB(s +s'+s")]

21888 (k"k") . )
eB sin[eB(s +s'+s")]
—2i$$'$"(k"K"). )}

eB sin[eB(s +s'+5"]

x{Di“’"(k, k', k";s, s, s" exp(

+Dlimu(k’ k", kl; S", sl, S) eXp(

(15)

(16)

17
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where the dependence of D" on the integration variables has been indicated explicitly
and a convenient relabelling of the integration variables s and s” has been made.

The symmetrised tensor (17) satisfies

a*”(0,0,0)=0 (18)

and, in the absence of a magnetic field, (17) vanishes identically, as required by Furry’s
(1937) theorem. The symmetrised tensor is therefore both finite and gauge invariant
and does not need to be renormalised.

An alternative form of a**(k, k', k") may be obtained from (17) by the trans-
formation s > —is, s’ > —is’, s" > —is":

auvo(k’ k', k")

4 @ © © 2 +5' 45"
e'B J‘ dsj ds’[ ds” exp[—m*(s +s'+s")]
(¢} 0

2(47)? o (s+5'+s5")ysinh[eB(s +s'+s5")]
X exp {[S”S k2+SS' k12+slsn k"2]||+[$"$¢”k2+$~f'¢wk’2+$';§”¢k”2]L}
(s+s'+s" eB sinh[eB(s +s'+s5")]

Vi ! " 1 ‘Al o —2i ' ! k”E,
X {Di‘ “(k, k', k" —is, —is”, —is") exp (eB'sinlﬁfg(;+s'ils”)])

) ) i 2i$j'$"(k"£')_j. )}
wopv [ N U N Y
X DY"(k, k", k'; —is", —is', —is) exp (eB Snh[eB(s 75 +57] (19)

where
§ = sinh(eBs), ¢ = cosh(eBs), (20)

andsoon. The substitution of the upper integration limits by infinity in (19) is achieved
by rotating through 7/2 in each integration plane and this is possible when no poles are
encountered. The quadratic vacuum polarisation tensor has poles when resonant
processes contribute to the quadratic polarisation of the vacuum. A sufficient condition
for the absence of poles is that photon-induced pair production be impossible.

The quadratic vacuum polarisation tensor must satisfy certain symmetry properties
(e.g. Melrose 1972). The relation

a "k, k', k"y=a" (k, k", k') (21
is satisfied by construction. The crossing symmetry

a*?(k, k', k") =a™ (—k', —k, k") (22)
for the symmetrised tensor follows from the identity

D (=k',—k, k", s,s",s"Yy=Dy"(k, k", k';s", s', 5). (23)
The time-reversal invariance relation
agilw, k; ', k' 0", k"; B) = —ai(—w, k; ~0', k'; —w", k"; ~B) (24)

for the 3-tensor a;; which is equal to the u =i, v =, p = component of a“** follows
from the identity

D;‘-"P(k’ kl’ kll; S, sl’ sli; _F)= _DIII‘PV(k, kl!’ kl; s", S’, S;F) (25)
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w, w'and @”. The identity (25) may also be used to show that (17) satisfies the symmetry
relation

" (k, k', ks F) = —a***(k, k', k", ~F), (26)

which is a necessary consequence of the charge—conjugation invariance of quantum
electrodynamics (Furry 1937).

5. The photon splitting probability

The probability for the splitting of a photon into two photons may be obtained from the
quadratic vacuum polarisation tensor by a procedure familiar in plasma physics (e.g.
Melrose 1974). The principal modes of propagation for a photon in the magnetised
vacuum have electric polarisation vectors either perpendicular ( L) or parallel (||) to the
plane formed by k and B. The scattering amplitude for a photon in the mode o to split
into photons in the modes ¢’ and ¢” is

Mo ~>a'+0")=2(4m)%el(k)el™* (ke ™ (k")a " (k, k', k"), (27)

where e (k) is the polarisation 4-vector of a photon in the mode o, * denotes complex
conjugation and the factor of 2 is due to the indistinguishability of the two final photons.
The probability per unit time for the decay process o - ¢’ + ¢” for final photons in the
ranges d’k’/(27)’ and &°k"/(27)® is

wa (k, k', k")
_ RLZ(k)RE (k)R %”"(k”)
lw® (k) (k"o (k)|

M(o—>a'+o"PQm) 6k ~k'— k", (28)

where RE(k) is the ratio of electric to total energy for photons in the mode . The

absorption coefficients due to photon splitting may be obtained from (28) by integrating

over the momenta of the final photons. This gives

d’k’ [ k"
gu k, k’, k" , 29

(2‘”)3 (2' '7)3 w ( ) (29)

k2 (k) = %j

where the factor of 3 is due to the indistinguishability of the two final photons.

The probability for photon splitting in the magnetised vacuum to lowest order in the
radiation field but exactly in the ambient field is given by (28) with the quadratic vacuum
polarisation tensor identified as the symmetrised tensor (17) and with the wave
properties of the magnetised vacuum determined from the linear vacuum polarisation
tensor (e.g. Melrose and Stoneham 1976). This result is valid for all magnetic field
strengths and for all photon frequencies and wavenumbers provided radiative cor-
rections are negligible. It is a generalisation of results obtained earlier by Adler et al
(1970), Bialynicka—-Birula and Bialynicki-Birula (1970) and Adler (1971).

The lowest-order term in an expansion of the scattering amplitude for photon
splitting in powers of the ambient field strength is proportional to B. This term
corresponds to the box diagram of figure 2 with photon dispersion included. It is
identically zero in the non-dispersive case (see § 6). Explicit resuits for this term are
given in the Appendix in the weak-field weak-dispersion limit. The next order term in
an expansion of the scattering amplitude is proportional to B>. This term corresponds
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to the hexagon diagram of figure 3 with photon dispersion included and is the dominant
term in the weak-field weak-dispersion limit. Odd powers of the ambient field strength
do not contribute to the scattering amplitude due to the charge—conjunction invariance
of quantum electrodynamics.

In the strong-field limit B » B,, the scatttering amplitude for photon splitting is of
order exp(—B/B.). Photon splitting into two photons is suppressed in this limit.
However, the splitting of a photon into more than two photons may be significant.

6. The non-dispersive case

In the non-dispersive case, the probability (28) for photon splitting reduces to

M(o o' +0")
8ww'w”

we (k, k', k") = @m)*8“(k — k'~ k") (30)

and the absorption coeflicients due to photon splitting reduce to

- 1 w w
ko7 (w) I do’ I do" §(w —w'—w")IM(a'->o"+o"’)lz. (31)
0

= R27rw’ o

In this case, the only Lorentz invariants on which the scattering amplitudes for photon
splitting can depend are B, w”sin® 6, w'*sin® 6 and w"* sin” §, where 6 is the angle
between the photon propagation direction and B. Hence, to calculate the scattering
amplitudes for arbitrary # one may perform the calcuation for 8 = 7r/2 and then replace
o by w sin 8, w’ by @’ sin # and " by " sin 8. The scattering amplitudes derived from
(17) for 6 = 7/2 in the non-dispersive case reduce to

M(oc-»o'+0")

-7 ie47B J " ds r ds’ J'w g SREIM D@ > o'+ 0”)
11'1 2 0 [ 0 S3 sin4(eBS)

(Is"s0? + 55’0 +5's"w"]
xexpii 3

_ [$H$¢Iw2+$$l¢'nw12+$7$N wllz])}
eB sin(eBS) ’

(32)

with

D[(L)>()'+()"]=Dilw o', 0"; 5, 5, s"),

DI(h-> (L) +()"]=Ds(~o", 0", ~w; s, 5", 5),

DI~ ) +(LY]=Di(~w", —w, 0'; s", 5, 5"),

D[(L)~» (L) +(L)]=Ds(w, o', w";s,s', s",

D{(o - o'+ 0")=0 otherwise; (33)
where

S=s+s'+5", (34)
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Di(w, 0, 0";s,s',s"
=4m*S? sin*(eBS)($'¢C"+C'$") 0w’ + ($'C+¢'$)0"]
+4iS sin’(eBS)($’°w' +$"%w")
+8ieBS” sin(eBS)[$($'C" +¢'$")w’' +$"($'¢ +¢'$)w"]
+45in*(eBS){—($'¢" + €'$")* (sw' — s"w")[s0' + (s + 50" ]’
+FC+C$) (50"~ 5"0")(s'+ 5w’ + 5" 0" 0"
—0'w"S[$7[(s'+s"w' + 5"0"]+ $"[s0' + (s + 5")w"]]}
+4S2 S ($C+C$) 0 + 8288 20 $' T+ 8w 0"
+$$7[$+2C'FC+)]w' w0 +$7($C + 80",
Di(w, o', 0";s,5', 5"
= —4sin’(eBS){m*S* —iS — (s&' — s"w")[s0' + (s + s )w"]}
x{($2¢" - ¢80 +[28'¢C'$" ¢+ $7($7 - ¢ ]w")
+4 sin*(eBS){m*S” —iS +[sw’ + (s + s)w"J[(s'+ "'+ 5"w"]}
x{[28C$"C"+ 87 - )]’ + [2$C$" ¢+ $($* - C?)]w"}
~4 sin’(eBS}{m*S* —iS +[(s' + 5"’ + s"w")(sw' — s"w")}
x{[2$€$' ¢+ $ 87 - ) ]o' + (¢ - ¢ 8w}
+48? $2($,2¢.,,2 _ ¢.,2$,,2) '3 s,,z $,2¢2 _ ¢'2$2)w"3
~[$287+ 288" T+ 'S +C'$ww' "} (35)

In the weak-field limit the leading contribution to the scattering amplitudes is of
order B>, The linear dependence of the weak-field scattering amplitude on the
magnetic field strength found by Skobov (1959), Minguzzi (1961), Sannikov (1967) and
Gal’tsov and Skobelev (1971) is spurious. These authors incorrectly took account of
the gauge dependent term ¢(x’, x”) in the electron propagator (1).

To lowest order in the magnetic field strength the scattering amplitudes are
proportional to ww'w"” and higher-order terms in w, w’ and " are absent. This confirms
the statement by Adler (1971) that the scattering amplitude for photon splitting with
exactly three interactions with the ambient field is exactly given by its low-frequency
limit. The probability for photon splitting in the weak-field limit is greatest when the
energy of the initial photon is divided equally between the two final photons (i.e. when
wl - wu =3 w)

An alternative form of the scattering amplitudes may be obtained by changing
integration variables to

s=i(s+s"+s"), t=i(s+s"), u=is. (36)
This gives
Mo-»o' +0o")
- 4 © s t _ 2 t I+ 1"
_le BJ‘ dsJ‘ dtj duexp( m-s)D'(c-»a'+0")
0 o 0

m'/? s> sinh®(eBs)
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u(s—1t) _ sinh(eBu) sinh[eB(s —t)] cosh[eB(t —u)]\ »
Xexp {( s eB sinh(eBs) @
+ (u(t —u) : sinh{eBu) sinh[eB(t — u)] cosh[eB (s — t)]) 2
s eB sinh(eBs) @
+ ((t ~u)(s—1) __ sinh[eB (¢t — u)] sinh[eB(s - ¢)] cosh(eBu)) ,,2}
s eB sinh(eBs) i

(37)
with

D(L) >+ (=Dl (w, w', 0" s, 1, u),

D> (Ly+()1=Di(-0', 0", ~w;s,s—u, t—u),

D(h> W' +()"=Di(-0", —w, 0';s, s~ t+u,s 1),

D'[(1)»> (LY +(L)]=Di(w, o', 0"; s, t, u),

D' o»o'+a") =0 otherwise; (38)
where

Di(w, o', 0" s, t,u)
=4m>s* sinh?(eBs){w’ sinh’[eB(s — u)]+ " sinh®(eBr)}
—45 sinh*(eBs){w' sinh*(eBu) + w" sinh’[eB (s — )}
—8eBs? sinh(eBs){w' sinh[eB (s — u)] sinh(eBu) + " sinh(eBt)
xsinh[eB(s — 1)} + 4 sinh*(eBs)}{—sinh’[eB (s — u)[uw' ~ (s — )w"]
X(uw' + to")o' +sinh*(eBt)[uow' — (s — o "l[(s — u)w’ + (s - No"lo"
—w'w"s[sinh*(eBu)[(s — u)w' + (s — )" +sinh’[eB (s — t) J(uo' + tw")]}
+45*{w” sinh*[eB(s — u)] sinh’*(eBu) + w" sinh}[eB (s — £)] sinh*(eBt)
+w"?w" sinh[eB(s — 1)] sinh*(eBu)
X [2 sinh[eB (s —t)]+sinh[eB(t +s —2u)]]
+w'w" sinh(eBu) sinh’(eB (s — 1)][2 sinh(eBu) +sinh[eB (2t - u)]]},
Di(w, o', 0" s, t, u)
= —4 sinh*(eBs)}{m?*s*+s — [uw’' — (s — )" uw' + tw")}
x{sinh[eB(s — u)]sinh[eB(2t—u —5)]w’
+3[cosh[2eB(t — u)]—cosh’[eB (2t — u —s)]—sinh’[eB (2t — u — $)w"}
+4 sinh®*(eBs){m2s*+ s + (uew' + tw")[(s — u)ew' + (s — He"l}
x{3{cosh[2eB(s — t)]—cosh’[eB(s — t — u)]—sinh’[eB(s —t — u) ]}’
+3{cosh(2eBu)—cosh’[eB (s — t — u)]—sinh*[eB(s — t — u)Jlw"}
—4 sinh?*(eBs)Y{m2s®+s +[(s —u)w'+ (s — No"uw’'— (s — )"}
x{3[cosh[2eB(r — u)] - cosh’[eB(t —2u)] —sinh’[eB(t - 2u)]jw’
+sinh(eBt) sinh[eB(t —2u)]w"}
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+4s*{sinh*(eBu) sinh[eB (s — u)] sinh[eB (2t — s — u)]w"

+sinh’[eB (s — )] sinh(eBt) sinh[eB (t —2u)]w"

—[sinh*(eBu) sinh*[eB (s — 1)]

+2 sinh(eBu) sinh[eB (s — t)] sinh (eBt) sinh[eB (s — u)llww w"}. (39)
This form of the scattering amplitudes is valid below the threshold for pair production.
The result for M[(.L) - () + ()"] in the non-dispersive case below the threshold for pair
production was obtained in a different form by Adler (1971) using the proper-time

technique.
In the low-frequency limit the scattering amplitudes reduce to

MI(L)-> () +mM"
=MI(h-> (L) + )" 1=MLh > () + (L)

4ia’B? ww w

= - 172 sin 0M1(B)
s
4ia’B>
M[(L)> (LY +(L1)]= 1:1,2 WO S OMy(B),
M{og-»>o' +0") =0 otherwise; (40)

where

M;(B):= ( \)AJ.ooo%—vexp( sBc/B){(—%-fé)coths

s
+ ) cosech’s +5 coth s cosech’ }

AN mis_ _ 3
M2(B).—( B) L ~ exp( sBc/B){ - coths

+ (%— sz) cosech? s —% s° cosech’ s}. (41)

The corresponding absorption coefficients are

«[(L)=> "+ )]
=k[(D-> (LY +(T= [P~ +(L)]

s (C5 ”)6(',%)5<M1<B>>2’

607 (B ;n 0)6(%)5(1”2(3 ),

klo=0o'+0cM=0 otherwise. (42)

k[(L)> (L) +(L)]=2

These results for the splitting of a low-frequency photon were derived by Adler (1971)
from the Heisenberg and Euler (1936) effective Lagrangian. The probability for
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photon splitting in the low-frequency limit is greatest when w = 3w’ =3w", as in the
weak-field limit. The scattering amplitudes and absorption coefficients in the low-
frequency weak-field limit may be obtained from (40) and (42) by noting that

M;(0) =45, M;(0) = 3. (43)

The results obtained agree with those presented by Adler et al (1970) and by
Bialynicka-Birula and Bialynicki-Birula (1970).

7. Dispersive effects

Conservation of 4-momentum for the photon splitting process o » o' + " requires that
the refractive indices u 7 (w, ) satisfy the ‘index-matching’ condition

(w’+w")u”(w'+w", 0)K=wlﬂo"(wl, 9/)K1+wn#0"(wu, 0")K", (44)

where K = k/|k|, § = cos™'(K . B/ B), etc. The photon splitting process is kinematically
allowed when the triangle inequality for vector addition is satisfied by (44), that is, when

(w'+w")u”(w'+w", o)swr#c’(w;, 0’)+w”p,""(w”, 01/). (45)

The photon splitting process is kinematically forbidden when (45) is not satisfied.

In the weak-dispersion limit, Adler (1971) has shown analytically that the reactions
D=+, b=+ (L), > @)+ @)= (L) +(L)" and (L)~ (L) +(L)" are
kinematically forbidden for 0 <w’, w"<w <2m and B < B, and numerically that the
reactions (L) > (L) +(|)", (L)=> ()" +(L1)" and (L) - ({|y +(|)" are kinematically allowed
for0<eo', w"<w=<1:3m and 0= B <1:3B.. Adler concluded that, for v <2m, the
splitting of || polarised photons is absolutely forbidden by dispersive effects while the
splitting of L polarised photons is allowed. Adler also pointed out that the dominant
splitting process for L polarised photons in the weak-dispersion limit is (1) - ({})' + (|))"
since the absorption coefficients for photon splitting processes involving an odd number
of || polarised photons are very much smaller than those involving an even number of ||
polarised photons. It is shown in the Appendix that the contribution from the hexagon
diagram dominates that from the box diagram for photon splitting in the weak-field
weak-dispersion limit. The absorption coefficient for the process (1)~ () +()" is
therefore approximately given by (42) with (43) in the low-frequency weak-field limit.

In general, the exact refractive indices must be used to determine whether a photon
splitting process is kinematically allowed. The polarisation selection rules of Adler
(1971) are inapplicable when dispersive effects are strong. Processes involving an odd
number of | polarised photons and processes corresponding to the box diagram may
give significant contributions to the exact scattering amplitudes for photon splitting.
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Appendix
The weak-dispersion box diagram contribution to photon splitting

For weak photon dispersion (i.e. for (k¥ < m?, (kz)“« m?, (k'*).« m?, etc) the box
diagram contribution to the quadratic vacuum polarisation tensor reduces to

a**(k, k', k")
= (e*Bi/ 14407’ m*)[B*" (k, k', k") + B (=K', =k, k")
+ B (—k", k', —k)], (A.1)
with
B (k, k', k")
= kz{l:"”"(—9k{|‘ +18k(* + kb —2k'*
B4 (3K —9kY + k) + EY (3kf — 3k +8kS + k')
+3g.|"1€“+g.,“(121$1—1512;")+gﬁ*"(—31€z+151€f)
—11g%k" + g% (TkY +9Kk) + g4 (16K5 — 9K )}
+(k"EN) L [16g" (—k* +2k"™) +12g[° (—k{" +2k[*)]
—F? {kf [~ 6k %)+ 22(kk )]+ ki [-10(k )T}
—g" (k% [30k )+ (kY — 9k +6(k?) . —6(kk') . +2(k'%).]
+k ' [-8(k>)+ 16(kk') — 4(k?) L +8(kk") ]}
—(g” — g P HRHA[3 (k™) + 5(kk" )y — 13(k') ]+ K/ [—8(k >+ 16(kk )T}
+E%[12k k(P — 40k ki ]+ k'F[~28Kk Kk +28k ki + 28k k("]
+kt[—6k%KS +6K% kS —16k"7kS — 10k k% + 10k k')
+kM[2k% kS — 18K kS +16k'7KS +16k7 k7]
+£“[6k”k" —10kk? -4k k'f +6kk'?
“[-8k’ k% +8k’ks +8k k'’ (A.2)

The weak-dispersion scattering amplitudes corresponding to the box diagram may be
derived from (A.1). For the kinematically allowed photon splitting processes one
obtains

ML)~ () + ()] = 5;""3,‘2” B S"’g) [3 cos 2B8(3w>~ 140'w") — 14w'w"],
ize’w"” (B sin
MI(1)> (1Y + ()= - zrsm (5 ") 3 sin 2830 — L4ww’ + 30,
iae’w’ B sin
MI(L)= () + (L)) = - e (5 ")35m 2830° - 400" +30"],  (A3)

where 8 is the dihedral angle between the plane containing the three photon directions
and the plane containing the initial photon direction and the ambient field. The
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corresponding absorption coefficients are

13x31a’m (B sin 0\¢( w\*
K= U+ )= gt (5) (2)

B, m
k[(L)=>(L)Y+({"
=k[(L)>()+(L)],
3x191a’m (B sin \6/ w\5
=140><(90‘n')4( B. 0) (E) ' (A.4)

The absorption coefficients (A.4) are significantly smaller than the non-zero absorption
coefficients given by the weak-field limit of (42). The contribution to photon splitting
from the hexagon diagram dominates that from the box diagram in the weak-field
weak-dispersion limit. The result (A.3) for M[(L)->(|)’+{(|)"] agrees with that
obtained from equation (A.2) of Bialynicka-Birula and Bialynicki-Birula (1970) and
corrects that obtained by Adler (1971). The result (A.3) of Bialynicka-Birula and
Bialynicki-Birula (1970) is obviously incorrect since it is not invariant under the
transformation w' © w”.
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