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J. Phys. A: Math. Gen., Vol. 12, No. 11, 1979. Printed in Great Britain 

Photon splitting in the magnetised vacuum 

R J Stoneham? 
Department of Theoretical Physics, Faculty of Science, Australian National University, 
Canberra, Australia 

Received 5 December 1978 

Abstract. An explicit result for the quadratic vacuum polarisation tensor in a static uniform 
magnetic field is derived using the Gthtnian representation of the electron propagator. The 
formalism of relativistic-quantum plasma physics is used to calculate the probability for a 
photon to split into two photons in the magnetised vacuum, without approximation in the 
magnetic field strength or in the photon frequency or wavenumber. The exact effect of 
photon dispersion on photon splitting is included. It is shown that the probability for photon 
splitting in both the weak-field and low-frequency limits is greatest when the energy of the 
initial photon is divided equally between the two final photons. Errors are indicated in 
earlier results for the box-diagram contribution to photon splitting in the magnetised 
vacuum. 

1. Introduction 

The possible existence in pulsars of magnetic fields with strength of order the critical 
field strength B, = m 2 c 3 / e h  = 4.4 x l O I 3  gauss has generated interest in relativistic 
quantum processes occurring in a strong magnetic field. In particular, the splitting of a 
photon into two photons in the presence of a magnetic field has been discussed in 
various approximations by Adler et a1 (1970), Bialynicka-Birula and Bialynicki-Birula 
(1970) and Adler (197 1). For B s B,, Bialynicka-Birula and Bialynicki-Birula (1970) 
have shown that the splitting of a photon into more than two photons is suppressed due 
to the smallness of both the scattering amplitude and the available phase space. In this 
paper, the probability for a photon to split into two photons due to the quadratic 
polarisation of the magnetised vacuum is derived exactly, without approximation in the 
frequency U,  wavenumber k or magnetic field strength B, and without assuming that the 
vacuum refractive indices are approximately equal to unity (i.e. without assuming weak 
photon dispersion). Radiative corrections to the quadratic vacuum polarisation tensor 
are assumed to be negligible (a reasonable assumption for B s Bc). 

One method of calculation of the probabilities for relativistic quantum processes in a 
magnetic field involves replacing the field-free electron propagator in the Feynman 
diagram for the corresponding field-free process by the electron propagator in the 
ambient magnetic field. One representation of this propagator, which is exact in the 
ambient field, was derived by Gkhkniau (1950) and GChCniau and Demeur (1951). 
Photon dispersion in the magnetised vacuum may be determined by making this 
replacement of the electron propagator in the ‘bubble’ diagram corresponding to the 
linear vacuum polarisation tensor (e.g. Tsai 1974, Melrose and Stoneham 1976). The 
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magnetised vacuum is found to be birefringent with the two refractive indices being 
functions of the field strength and of the photon frequency and wavenumber. The 
probability for photon-photon scattering in the magnetised vacuum may be determined 
by making this replacement of the electron propagator in the ‘box’ diagram cor- 
responding to the cubic vacuum polarisation tensor (e.g. Ng and Tsai 1977). In this 
paper this replacement of the electron propagator is made in the ‘triangle’ diagram 
corresponding to the quadratic vacuum polarisation tensor. The formalism of relativis- 
tic quantum plasma physics (e.g. Melrose 1974) is then used to derive exact results for 
the probability for a photon to split into two photons in the presence of an ambient 
magnetic field. One advantage of this method of calculation is the relative ease with 
which the exact effect of photon dispersion on photon splitting is included. 

The Feynman diagrams relevant to photon splitting are presented in Q 2 and the 
importance of the ‘non-dispersive case’ (where photon dispersion is ignored) is dis- 
cussed. The GChCnian representation of the electron propagator in a magnetic field is 
recorded in $ 3  and is used in 0 4 to calculate the quadratic vacuum polarisation tensor 
in a magnetic field. Exact probabilities for photon splitting in the magnetised vacuum 
are derived in 0 5 using the formalism of relativistic quantum plasma physics. The 
non-dispersive case of photon splitting is discussed in 9 6 and dispersive effects are 
included in $ 7. In the Appendix, errors are pointed out in the results obtained by 
Bialynicka-Birula and Bialynicki-Birula (1970) and Adler (197 1) for the box-diagram 
contribution to photon splitting in the magnetised vacuum. 

The notation used in this paper is that of Berestetskii et a1 (1971), with the 
exceptions that here the electronic charge is -e and Sp denotes the trace over Dirac 
matrices. Unrationalised Gaussian units with h = c = 1 are used. The symbols := and =: 
define the quantities on the left and right respectively, and A’ = (Ao, A) relates a 
4-vector to its time and space components and A = (Al,  Az ,  A3)  relates the 3-vector to 
its Cartesian components. The quantities g?” and g(i” are defined as diagonal 
(0, -1, -1 ,0)  and diagonal (1, 0, 0, -1) respectively and the,  contractions of two 
4-vectors a” and b” over the i and 11 sub-spaces are written as (ab)L:= a“b‘g& and 
(ab)II:= U 6 g, The i and 11 parts of a 4-vector are defined by a? := gYuu and 
a (i := gfUau. 

U 7 It 

2. Feynman diagrams 

The processes of photon dispersion and photon splitting in an ambient magnetic field 
are strictly inseparable processes. To lowest order in the fine structure constant a, but 
exactly in the ambient field, the Feynman diagrams for the splitting of a photon into two 
photons are given in figure 1,  where the electron propagator is the GChknian propagator 
and where the dispersion relations for the initial and final photons are given by the exact 
results for the magnetised vacuum. 

When photon disperion is weak it is convenient to consider initially the non- 
dispersive case. Dispersive effects may then be included as small perturbations. 
Conservation of 4-momentum in the non-dispersive case can only be satisfied if the 
propagation directions of the three photons are identical. This condition, together with 
the requirements of Lorentz invariance, gauge invariance and charge-conjugation 
invariance, imposes restrictions on the scattering amplitudes for photon splitting. 
Bialynicka-Birula and Bialynicki-Birula (1970) and Adler (197 l), for example, have 
shown that photon splitting in the non-dispersive case with one interaction with the 
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ambient field (figure 2) is forbidden. Adler (1971) has also shown that the scattering 
amplitudes for splitting with exactly three interactions with the ambient field (figure 3) is 
exactly given by its low frequency limit. 

Figure 1. The Feynman diagrams for photon splitting. The electron propagator is the 
GChtnian propagator and the dispersion relations for the initial and final photons are given 
by the exact results for the magnetised vacuum. 

Figure 2. A box diagram for photon splitting. The x denotes an interaction with the 
ambient field. There are six such diagrams corresponding to permutations of the vertices. 

Figure 3. A hexagon diagram for photon splitting. Each x denotes an interaction with the 
ambient field. There are twenty such diagrams corresponding to permutations of the 
vertices. 

3. The electron propagator 

GChCniau (1950) and GChCniau and Demeur (1951) derived a one-dimensional 
integral representation of the electron propagator in a static uniform magnetic field 
which includes the effect of the ambient field exactly. With the 3-axis along the 
magnetic field B the propagator from x” = ( f ,  r )  to x ’ ,  = ( f ‘ ,  r’) may be written as 

(1) G(x, x ’ )  = 4 ( ~ ,  x’)A(x - x ’ ) ,  
with 

X‘ 

4(x, x ’ )  := exp[ -ie dx, A”(x)]  

and 
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The integral in (2) is along the straight line from x to x ’  and A””()  is the 4-potential of 
the ambient field. Feynman’s rule for avoiding the poles is understood in (3) and 
2:= iy’y’ =diagonal (1, -1, 1, -1). 

The function A(x) is independent of the choice of gauge of the ambient field. The 
gauge dependent part of the electron propagator may be rewritten as (Schwinger 1951) 

* ( X , x ’ ) = e x p ( - i e ~ x x ’ d x , [ A Y ( x ) + - F ” u x u  1 
2 (4) 

where F”’:=aA’’/ax,-aA”/ax, is the Maxwell tensor of the ambient field. The 
integral in (4) is independent of the path of integration. 

4. The quadratic vacuum polarisation tensor 

The unsymmetrised quadratic vacuum polarisation tensor in the presence of an ambient 
magnetic field is defined by 

at;YP(x, x ’ ,  x ” )  = ie3Sp[y”G(x, x ’ ) y ” G ( x ’ ,  x” )yPG(x” ,  x ) ]  ( 5 )  

and correspnds to the electron propagator part of one of the triangle diagrams of figure 
1. The tensor is symmetrised in (16) below to include the contribution from the other 
diagram of figure 1. Substituting (1) with (4) for the electron propagator in (5) gives 

ayyp(x, X I ,  x ” )  =ie3 exp[$e(x -x’),~’”(x’’-x),I 

xSp[y”A(x - x’)~’ ’A(x‘  - x ” ) ~ ” ( x ” -  x ) ] .  

This result is manifestly translationally invariant and manifestly independent of the 
choice of gauge of the ambient field. Choosing x ” =  0 in (6) and using (3) gives 

x * -  
sin(eBs) sin (e&’) sin(eBs”) 

i eB(x -x’)? eB(x’): eB(x2)1 
4 tan(eBs) tan(eBs’) tan(eBs”) 

xexp[ --( + + 

with 
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The Fourier transform of (7) is given by 

a’;”’(k, k‘, k”):= I d4x I d4x’ exp(ikx -ik‘x’)a’;”’(x, x‘), (9) 

where the signs of the 4-momenta are chosen so that the identity 

k, = kh + k,” (10) 

is satisfied. The relevant integrals in (9) have been evaluated by Bogoliubov and 
Shirkov (1959 P 14.1). One obtains 

aY””(k, k’, k”) 

exp[-im2(s +s’  +s”)]DY”’(k, k’, k”) 
(s + s’ + s”) sin[eB (s + s’ + s”)] 

m 00 ie4B 
(4T) 0 
=y I dsIo ds’ jo ds“ 
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where 

$ := sin(eBs), $‘:= sin(eBs’), 

@ := cos(eBs), @’ := cos(eBs’), 

and 

[@$k +$’@“‘-$’$“(L- it)]: 
sin[eB(s +s’+s’’)] 

Af; := 9 

[@$k - ($0 + c $ ) k ’  + $$”RI: BY := 
sin[eB(s +s’+s’’)] 

$ := sin(eBs”), 

@” := cos(eBs”), 

[s”k + s’k’](j A r  := 
( S + ” + S ” )  ’ 

[s”k - (S + ~”)k’]/i B(i :=- 
(s +s’+s”)  ’ 

[-($C‘+CS’)k +C$‘k’-$$‘~’I? cr := [-(S + s’)k + ~’k’]/i 
, (s +s’+s‘’) ’ 

cy := 
sin[eB(s +s’+s’’)] 

114) 
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-((BC),Ay + (CA),BI - (AB),Cf; )g”” 

- (-(BC),AP, + (CA),B? + (AB),C? )g””] 

+ 4i [cos[eB(s’- s”)](A?g”” -Aygyp - AYgP,”) 
(s + s’ + s”) 

4ieB 
sin[&($ + s’+ s”)] 

+ [A?(gp” + cos(2eBs)gY” - sin(2eBs)&’ ) 

The symmetrised quadratic vacuum polarisation tensor is defined by 

aWuP(k ,  k’,  k ” ) = $ [ c ~ ~ ” ~ ( k ,  k’, k ’ ‘ ) + a ~ ” ” ( k ,  k” ,  k’)]. (16) 

For the magnetised vacuum, (16) with (11) may be rewritten as 

a”””(k, k’, k”)  

[$$4!’k2 + $$’pk’2  + $’$“4!k”’]L + 
eB sin[eB(s +s‘+s”)] 

( 2i$$‘$(kf’P), 
el? sin[eB(s + s’ + s”)] 

( -2i$$’S,,(krfl’). 
eB sin[eB(s+s’+s”)] 

Dl;””(k, k ’ ,  k“ ;  s, s’, s”) exp 

+DY“(k, k“, k’; s ” , ~ ’ ,  s)exp 
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U ,  U' and U". The identity (25) may also be used to show that (17) satisfies the symmetry 
relation 

(26) 

which is a necessary consequence of the charge-conjugation invariance of quantum 
electrodynamics (Furry 1937). 

a W v P ( k ,  k' ,  k";  F)= - a F v P ( k ,  k ' ,  k";  - F ) ,  

5. The photon splitting probability 

The probability for the splitting of a photon into two photons may be obtained from the 
quadratic vacuum polarisation tensor by a procedure familiar in plasma physics (e.g. 
Melrose 1974). The principal modes of propagation for a photon in the magnetised 
vacuum have electric polarisation vectors either perpendicular ( I ) or parallel (11) to the 
plane formed by k and B. The scattering amplitude for a photon in the mode a to split 
into photons in the modes a' and a'' is 

M ( a +  a'+a") = 2(4 . r r )3 '2ez (k )e~ '* (k ' ) e~*(k")cy""P(k ,  k ' ,  k"),  (27) 

where e z ( k )  is the polarisation 4-vector of a photon in the mode a, * denotes complex 
conjugation and the factor of 2 is due to the indistinguishability of the two final photons. 
The probability per unit time for the decay process a + a' + a'' for final photons in the 
ranges d3k ' / (2d3  and d3k"/(2v)3 is 

w z'"" (k, k', k") 

where R g ( k )  is the ratio of electric to total energy for photons in the mode a. The 
absorption coefficients due to photon splitting may be obtained from (28) by integrating 
over the momenta of the final photons. This gives 

where the factor of 1 is due to the indistinguishability of the two final photons. 
The probability for photon splitting in the magnetised vacuum to lowest order in the 

radiation field but exactly in the ambient field is given by (28) with the quadratic vacuum 
polarisation tensor identified as the symmetrised tensor (17) and with the wave 
properties of the magnetised vacuum determined from the linear vacuum polarisation 
tensor (e.g. Melrose and Stoneham 1976). This result is valid for all magnetic field 
strengths and for all photon frequencies and wavenumbers provided radiative cor- 
rections are negligible. It is a generalisation of results obtained earlier by Adler et al 
(1970), Bialynicka-Birula and Bialynicki-Birula (1970) and Adler (1971). 

The lowest-order term in an expansion of the scattering amplitude for photon 
splitting in powers of the ambient field strength is proportional to B. This term 
corresponds to the box diagram of figure 2 with photon dispersion included. It is 
identically zero in the non-dispersive case (see 0 6). Explicit results for this term are 
given in the Appendix in the weak-field weak-dispersion limit. The next order term in 
an expansion of the scattering amplitude is proportional to B 3 .  This term corresponds 
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to the hexagon diagram of figure 3 with photon dispersion included and is the dominant 
term in the weak-field weak-dispersion limit. Odd powers of the ambient field strength 
do not contribute to the scattering amplitude due to the charge-conjunction invariance 
of quantum electrodynamics. 

In the strong-field limit B >> B,, the scatttering amplitude for photon splitting is of 
order exp(-BIB,). Photon splitting into two photons is suppressed in this limit. 
However, the splitting of a photon into more than two photons may be significant. 

6. The non-dispersive case 

In the non-dispersive case, the probability (28) for photon splitting reduces to 

and the absorption coefficients due to photon splitting reduce to 

In this case, the only Lorentz invariants on which the scattering amplitudes for photon 
splitting can depend are B’, w’ sin’ 8, U‘‘ sin’ 8 and w’”sin’ 8, where 8 is the angle 
between the photon propagation direction and B. Hence, to calculate the scattering 
amplitudes for arbitrary 8 one may perform the calcuation for 8 = 7r/2 and then replace 
w by w sin 8, U ’  by 0’ sin 8 and U’’ by w” sin 8. The scattering amplitudes derived from 
(17) for 8 = 7r/2 in the non-dispersive case reduce to 

M(a-,a‘+a”) 

[S””SS~w’2+S’S’’W’~2] 

S 
xexp { i( 

[$$@w ’ + $$’@U ” + $’$Qo ”’ - 
eB sin(eBS) 

with 

D[(l)-,()()’+()I)”]=61(0, w’,  w”;  s, s’, s”), 

D[(~”)’+(~~)”]=D1(-w’ ,w’’ ,  - w ;  s’, s”, s), 

D[(ll) + (I[)‘+ (I )”I = D1(--w”, -w, 0’;  s”, s, s‘), 

D[(I)-*(I)’+(I)’’]=~z(w, U ’ ,  w “ ;  s, s’, s”), 

D(a  -* a’+ a”) = 0 otherwise; (33) 

(34) 

where 

,s := s + s’ + S”, 
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D I ( 0 ,  U’ ,  w ” ;  s, sf, SI’) 

= 4m2s2 sin2(eBs)[($@”+@’$)2wr + ($’@+@f$)2wff] 

+4is  sin2(eBS)($’w’ + $ ’ w f ’ )  

+8ieBS2 sin(eBS)[$($‘@” + @ $ ) U ’  + $ ( $ @  + @’$)U ”1 
+4 s inZ(e~S) { - ($ ’P+@’$)2 ( sw’ - s ’ fw’ ’ ) [ sw’  + (s +sf )w”]w’  

+($‘@+@’$)2(so‘- sff6J”)[(s’+s”)w’+ s”o”]w” 

- -”w””(s’+s’ f )w‘+s‘ ’w~’]+$2[sw’+(s +s ’ )w”] ] }  

+4S2{$2($’@+@’$)2w’3 + $2$[$”+ 2(“@”+@‘$)]w~2w~‘ 

+$$2[$ + 2@’($’@ + @’$”w’’2 + $2($’@ + 4?f$)2w”3}, 

= -4 sin2(eBS){m2S2-iS-(swr-s”of‘)[Sof +(s +s’)o’‘l) 
X { ( $ ‘ 2 @ ” 2 _ @ 2 $ 2 ) w ’ + [ 2 $ @ $ @ ” + $ 2 ( $ ’ 2  - ( y ) l w ” }  
+4 sin2(eBS){m2S2-iS+[sw’+(s + ~ ‘ j w ” ] [ ( ” + s ’ ’ ) o ’ + s ’ ’ w ~ ’ ] }  

x{[2$@$@ + $ 2 ( $ 2  - @ 2 ) ] w f  + [2$$$4?”+ $“2($2 - Q2)3w”} 

-4 sin2(eBS){m2S2 - i s  + [ ( s t +  s”)w’ + s”w”](sw’ - sJfwn)J 

x{[2$@$’@’ + $2($’2 - @’2)3w’ + ($‘2@2 - @’2$2)”’} 

- [ $ 2 $ 2  + 2$$($’@ + @‘$)($’@” + @$)ww’wf ‘ } .  

Dz(w,  U ‘ ,  w ” ;  s, SI,  SI’) 

+,~2{$2($‘2~2 - @ r 2 p 2 ) w r 3  + $ 2 ( $ ’ 2 @ 2  - @ 1 2 $ 2 ) ~ ~ ~ 3  

(35) 

In the weak-field limit the leading contribution to the scattering amplitudes is of 
order B3. The linear dependence of the weak-field scattering amplitude on the 
magnetic field strength found by Skobov (1959), Minguzzi (1961), Sannikov (1967) and 
Gal’tsov and Skobelev (1971) is spurious. These authors incorrectly took account of 
the gauge dependent term 4 ( x ‘ ,  x” )  in the electron propagator (1). 

To lowest order in the magnetic field strength the scattering amplitudes are 
proportional to wu’w’’ and higher-order terms in w, w ’  and U’‘ are absent. This confirms 
the statement by Adler (1971) that the scattering amplitude for photon splitting with 
exactly three interactions with the ambient field is exactly given by its low-frequency 
limit. The probability for photon splitting in the weak-field limit is greatest when the 
energy of the initial photon is divided equally between the two final photons (i.e. when 

An alternative form of the scattering amplitudes may be obtained by changing 

(36) 

= “’1 = 3”). 1 

integration variables to 

s := i(s + s’ + s”), t := i(s + s’), U := is. 

This gives 

M((T“’+(T’’) 

ie4B OD ‘ exp(-m2s)Dt(a+ gf + an) 
=-m ?T Io ds I, dt  Jo du s3 sinh4(eBs) 
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U ( S  - t )  sinh(eBu) sinh[eB(s - t)] cosh[eB(t - U )  
eB sinh(eBs) 

u(t  - U )  sinh(eBu) sinh[eB(t - U)] cosh[eB(s - t)] +(-- 
S eB sinh(eBs) 

+ ( ( t  - U ) ( S  - t) sinh[eB(t - U)]  sinh[eB(s - t)] cosh(eBu) - 
S eB sinh(eBs) 

with 
D t [ ( ” ‘ + ( ~ ~ ) ” ] = D : ( w , W ’ , w ” ; s ,  t, U), 

D+[(l l )+(l) ’+(11)‘’]=D:(-w’,wf’ ,  -0; s, s-U, t - U ) ,  

Dt[(ll) .+ (11)’ + (II)”] = D; (-U“ -w, w ’ ;  s, s - t + U, s - t ) ,  

D+[( L)-+ (.L)‘+ (L)”] =D;(”, U’ ,  w”;  s, t, U), 

D+(a .+ a‘ + a”) = 0 otherwise; 
where 

D: (0, U‘ ,  w” ;  s, t, U )  

= 4mZsZ sinh2(eBs){w’ sinh2[eB(s - u)]+w” sinh2(eBt)} 

-4s sinh2(eBs){w’ sinh2(eBu) +on sinh’[eB(s - t)3) 

-8eBs’ sinh(eBs){w’ sinh[eB(s - U)] sinh(eBu) + w” sinh(eBt) 

xsinh[eB(s - t)}+4 sinh2(eBs){-sinh2[eB(s - u)][uw’-(s- t)w”] 

X(UU’+ tw”)w’ +sinh2(eBt)[uw’ - (s - t)w“I[(s - U)@’+ (s -.f)0”1wr‘ 

-w’ons[sinh2(eBu)[(s - u)w’+(s  - t)o”]+sinh’[eB(s- t)](uw’+ tu“)]} 

+4sZ{wt3 sinh’[eB(s - U ) ]  sinh’(eBu) +uR3 sinhZ[eB(s - f)] sinh’(eBt) 

+wr2wn sinh[eB(s - t)] sinh2(eBu) 

x [2 sinh[eB(s - t)] + sinh[eB (t + s - 22.4 )]] 
+w’wft2 sinh(eBu) sinh’[eB(s - t)][2 sinh(eBu) +sinh[eB(2t - U)]]}, 

D ; ( w ,  w’,  w”;  s, t, U )  
= -4 sinh2(eBs){m2s2+s-[uo’-(s-t)w”](uo’+tw”)} 

x{sinh[eB(s - U)] sinhCeB(2t - U - s ) ] ~ ’  

+ &cosh[2eB ( t  - U)] - cosh2[eB (2t - U - s)] - sinh’[eB (2t - U - s)]]w”} 

+4 sinh2(eBs){m2sZ+s +(uw‘+tw”)[(s -~)w’+(s“)w’‘]} 

x{$[cosh[2eB(s -t)]-cosh2[eB(s -t-u)]-sinh2[eB(s-t -u)]]w’ 

+$[cosh(2eBu)-cosh2[eB(s -t-u)]-sinh*[eB(s -t -u)]]w“} 

-4 sinh2(eBs){m2sZ +s +[(s - u)w’+  (s - t)w”][uo’- (s - t)w’’l} 

x{~[cosh[2eB(t - U)] - cosh2[eB(t - 22411 -sinh2[eB(t - 2u)Ilw‘ 

+sinh(eBt) sinh[eB ( t  - 224 )lo“) 
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+4s2{sinh2(eBu) sinh[eB(s - U ) ]  sinhieB(2t -s - u ) ] ~ ' ~  

+sinh2[eB(s - t ) ]  sinh(eBf) sinh[eB(t - 2u j]w'" 

- [sinh2(eBu) sinh2[eB(s - t)] 

+2 sinh(eBu) sinh[eB(s - t)] sinh (eBt) sinh[eB(s - u)]]wwrw"}. (39) 

This form of the scattering amplitudes is valid below the threshold for pair production. 
The result for M [ (  I) + (11)' + (Il)''] in the non-dispersive case below the threshold for pair 
production was obtained in a different form by Adler (1971) using the proper-time 
technique. 

In the low-frequency limit the scattering amplitudes reduce to 

M [ (  I 1 + (11)' + (II)"] 
= M[(ll) + ( 1 1' + (II,''] = MKIIj + (Ill' + ( 1'7 

4ia3B3 uw'w ' '  = sin30Ml(B), 
112 

?T 

4ia3B3 ww'w'' 
M [  ( i ) + ( I )' + ( I )"I = 1/2 7 sin3 8M2 (B j, 

?r 

M(c+ + a'+ a") = 0 otherwise ; 

where 

B " d s  3 s  
Mi(B):= (i) Io -eexp(-sB,/B)[ S (-z+;) coth s 

S 
cosech's +- coth s cosech2 s 

2 

Mz(B) := ( $)4 lom $ exp(-sB,/B)[ 4 3 coth s 
S 

3 
2 

cosech' s -- s2 cosech2 s). 

(40) 

The corresponding absorption coefficients are 

These results for the splitting of a low-frequency photon were derived by Adler (1971) 
from the Heisenberg and Euler (1936) effective Lagrangian. The probability for 
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photon splitting in the low-frequency limit is greatest when w = f w ’  =$U”, as in the 
weak-field limit. The scattering amplitudes and absorption coefficients in the low- 
frequency weak-field limit may be obtained from (40) and (42) by noting that 

The results obtained agree with those presented by Adler et a1 (1970) and by 
Bialynicka-Birula and Bialynicki-Birula (1970). 

7. Dispersive effects 

Conservation of 4-momentum for the photon splitting process a + a‘ + a” requires that 
the refractive indices p m ( w ,  8 )  satisfy the ‘index-matching’ condition 

( w ’ + w f ’ ) p u ( w ’ + w f ’ ,  e)K = w r p u ’ ( w f ,  er)Kf+Wirpm”(W”, e q w ,  (44) 

where K := k/lkl, 8 = cos-’(K. BIB), etc. The photon splittingprocess is kinematically 
allowed when the triangle inequality for vector addition is satisfied by (44), that is, when 

The photon splitting process is kinematically forbidden when (45) is not satisfied. 
In the weak-dispersion limit, Adler (197 1) has shown analytically that the reactions 

(11) + (11)‘ + ([I)”, (11) + (11)‘ + (I)’’, (11) + (1)’ + (1bff, (11) + (I)’ + (I)’’ and (I) + (I)’ + (I)’’ are 
kinematically forbidden for 0 S U ’ ,  w ” S  w < 2m and B < B, and numerically that the 
reactions (I) + (I)’+ ([I)”, (I) + (I[)”+ (I)” and (I) + (11)’ + (11)’’ are kinematically allowed 
for O S  w ’ ,  w ” 6  w s 1.3 m and O C  B s 1.3B,. Adler concluded that, for w < 2m, the 
splitting of ( 1  polarised photons is absolutely forbidden by dispersive effects while the 
splitting of I polarised photons is allowed. Adler also pointed out that the dominant 
splitting process for I polarised photons in the weak-dispersion limit is (I) + (11)’ + (11)‘’ 
since the absorption coefficients for photon splitting processes involving an odd number 
of 11 polarised photons are very much smaller than those involving an even number of 11 
polarised photons. It is shown in the Appendix that the contribution from the hexagon 
diagram dominates that from the box diagram for photon splitting in the weak-field 
weak-dispersion limit. The absorption coefficient for the process (I) + (I[)’+ ([I)” is 
therefore approximately given by (42) with (43) in the low-frequency weak-field limit. 

In general, the exact refractive indices must be used to determine whether a photon 
splitting process is kinematically allowed. The polarisation selection rules of Adler 
(1971) are inapplicable when dispersive effects are strong. Processes involving an odd 
number of I polarised photons and processes corresponding to the box diagram may 
give significant contributions to the exact scattering amplitudes for photon splitting. 
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Appendix 

The weak-dispersion box diagram contribution to photon splitting 

For weak photon dispersion (i.e. for (k2)L<< m 2 ,  (k2)il<< m 2 ,  (k’2)1<< m 2 ,  etc) the box 
diagram contribution to the quadratic vacuum polarisation tensor reduces to 

a ( k ,  k ’ , k ”) 

= (e B i/ 1440 7r m “) [ p *up ( k ,  k ’, k ”) + /3 ”W (- k ’, - k,  k ”) 

+ ppycl (- k”, k’,  - k ) ] ,  (-4.1) 

with 

PwYP(k ,  k’,  k”) 

:= k2{f iyP(-9kr  + 18k6& + k y  -2kY”) 

+fitM ( -3kiy  - 9 k ;  + k:”)+fiYY(3k[ - 3ki” + 8kY + k:P) 

+3glip&Y + g $ ” ( l 2 f f f ;  - 15L:”)+g/iV(-3LP, + 15L:P) 

-1lgy’L: + g t ” ( 7 l ;  +9k*:”)+gY’(16LP, -9k*y)} 

+ (k”L‘),[ i 6g 

-fiY {k  r [ -6(k ’)11+ 22(kk’)ll] + k i F  [- 1 O ( k 2 ) ~ ~ l }  

-gVP{~Y[3(k2)l l  + (kk’)il- 9(k”)11+ 6 ( k 2 ) 1  - 6 ( k k ’ ) i  + 2 ( k f 2 ) i ]  
+ Ll&’ [ -8( k *)e + 16( k k’)ii - 4( k ’)1+ 8 ( k  k ’ ) J }  

- ( g T  - gfIP){R”,3(k2)11+ 5(kk’)li- 13(k’2)ll]+ LY![-8(k2)il+ 16(kk’)\ll} 

+L:[12kijkiP -40ki”k(lP]+ LLF[-28k[k[ +28kijkiP +28ki’k(IP] 

(- k ” + 2 k ’@ ) + 12g T (- k r + 2 k i” )] 

+k7[-6k;CP, +6k*f;k7 - 16k:”LP, - 10L:‘kP, + 10k;L:PI 

+k\”[2k;LP, - 18L;k; + 16k:’L; + 16L;lk:Pl 

+Lyw[-8k;k5 +8k:’k; +8k‘;k;P]. (A.2)  

The weak-dispersion scattering amplitudes corresponding to the box diagram may be 
derived from (A. 1). For the kinematically allowed photon spIitting processes one 
obtains 

+LY[6kyk? - 10k:”k; -4kl;k:P +6k:”k:P] 

iae3w1’ B sin 3 
M [ (  L)+ (L)’+  ( I I ) ” ]  = - 452773’2m2 ( 7 7  3 sin 2 p [ 3 w 2 - 1 4 ~ w ’ + 3 w f 2 ] ,  

3 iae w ’  B sin 
M [ ( I ) + ( ( I ) ’ + ( L ) ” ] =  -4527r3/2m2 ( 7 7  3 sin 2p[3w2-14ww“+3wr’2], (A .3)  

where /3 is the dihedral angle between the plane containing the three photon directions 
and the plane containing the initial photon direction and the ambient field. The 
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corresponding absorption coefficients are 

The absorption coefficients (A.4) are significantly smaller than the non-zero absorption 
coefficients given by the weak-field limit of (42). The contribution to photon splitting 
from the hexagon diagram dominates that from the box diagram in the weak-field 
weak-dispersion limit. The result (A.3) for M[( I) + (ll)’+ (II)”] agrees with that 
obtained from equation (A.2) of Bialynicka-Birula and Bialynicki-Birula (1970) and 
corrects that obtained by Adler (1971). The result (A.3) of Bialynicka-Birula and 
Bialynicki-Birula (1970) is obviously incorrect since it is not invariant under the 
transformation w ’ t) w”.  
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